Uniform approximation of sgnx by polynomials and entire functions
نویسندگان
چکیده
In 1877, E. I. Zolotarev [19, 2] found an explicit expression, in terms of elliptic functions, of the rational function of given degree m which is uniformly closest to sgn (x) on the union of two intervals [−1,−a] ∪ [a, 1]. This result was subject to many generalizations, and it has applications in electric engineering. Surprisingly, to the best of our knowledge, the similar problem for polynomials was not solved yet, so we investigate it in this paper. For comparison, we mention here the results on the uniform approximation of |x|α, α > 0 on [−1, 1]. Polynomial approximation was studied by S. Bernstein [3, 4] who found that for the error Em(α) of the best approximation by polynomials of degree m the following limit exists:
منابع مشابه
A method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملSolving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کاملSharp Jackson-type Inequalities for Approximations of Classes of Convolutions by Entire Functions of Exponential Type
In this paper, a new method is introduced for the proof of sharp Jacksontype inequalities for approximation of convolution classes of functions defined on the real line. These classes are approximated by linear operators with values in sets of entire functions of exponential type. In particular, a sharp Jackson-type inequality for the even-order derivatives of the conjugate function is proved. ...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006